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< A new algorithm improves the prediction accuracy of state of power (SOP) of a Li-ion battery.
< It incorporates a nonlinear diffusion resistance into the formulas for the SOP prediction.
< The results appear very promising in testing Hitachi cells in a simulated HEV environment.
< It provides much more accurate power prediction than the original BSE.
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a b s t r a c t

We present a new algorithm that improves the prediction accuracy of the maximum charge and
discharge power capabilities, i.e. state of power (SOP), of a battery state estimator (BSE) using an
equivalent-circuit representation of a battery. For short time (high frequency) operation, lithium ion
traction batteries are often dominated by ohmic and interfacial kinetic resistance, and conventional
equivalent circuits employing resistors and capacitors (RC circuits) work well to characterize the
system. However, for longer times, diffusion resistance becomes important and conventional BSEs
based on RC elements fail to provide useful power predictions. In order to take into account diffusion
in the SOP prediction, we propose to incorporate a nonlinear resistance into the power prediction
formulas that are otherwise based on an RC circuit formulation; The diffusion effect is addressed with
this nonlinear resistance whose value is proportional to the square root of time. The new approach is
implemented in a vehicle-simulation environment (a hardware-in-the-loop setup) to predict the SOP
of a lithium-ion battery. Simulation results demonstrate that this revised estimator provides much
more accurate power prediction without compromising the regression performance of the original
BSE.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In many battery-powered systems such as electric vehicles (EV)
and hybrid electric vehicles (HEV), the efficiency of traction
batteries can be greatly enhanced by intelligent management of the
electrochemical energy storage system [1]. These applications
require a battery state estimator (BSE) to ensure accurate and
timely estimation of the state of charge (SOC), the charge and the
discharge power capabilities (SOP), and the state of health (SOH). In
this work, we focus on the SOP predictions of HEV lithium ion
batteries.
þ1 310 317 5840.

All rights reserved.
Various battery models have been studied within the framework
of a BSE [2e17]. A physics-based electrochemical model may be able
to capture the temporally evolved and spatially distributed behavior
of the essential states of a battery [2,3,16,17]. Such analyses are built
upon fundamental laws of transport, kinetics and thermodynamics,
and require inputs of many physical parameters. Because of their
complexity, longer simulation times are needed, and there is no
assurance of convergence in terms of state estimation. Thus, while
these more complex models are suitable for battery design and
analysis, they have not been used in commercial BSEs. Due to limited
memory storage and computing speed of embedded controllers
employed in many applications and the need for fast regression in
terms of parameter extraction, a (zero dimensional) lumped
parameter approach based on an equivalent circuit model has been
found to be most practical for BSE formulation. A circuit employing
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a resistor in series with a circuit element comprising a parallel
resistor and capacitor (an R-RC circuit, see Fig. 1) has been employed
successfully for embedded controllers [6,14,15,18e24]. It should be
noted that this approach is fundamentally correct only when the
battery is exposed to small as well as high frequency signal pertur-
bations around equilibrium; in this case, the parameter value can be
traced back to those appearing in themore complex physical models
mentioned above. Highly non-equilibrium behavior of the battery is
difficult to address with a simple R-RC circuit. For such behavior,
more physical effects need to be included alongwith amore detailed
model, at the expense of the simplicity and robustness [3e5].

Recently we have published an adaptive, multi-parameter
direct-differential (DD) algorithm based on the direct solution of
the differential equations that govern an equivalent-circuit repre-
sentation of the battery [24]. The short-term SOP projection was
shown to agree well with the experimental values, but the long-
term SOP projections deviated from measurements. The deviation
could exceed 30% for the 10-s SOP projections. A battery’s long-
term power output is subject to mass-transfer limitations (diffu-
sion resistance), be it due to salt diffusion within the separator
phase or lithium diffusion within the solid state. The well-known
Warburg impedance can represent diffusion resistance in many
cases in the frequency domain [25]. However, it is not straightfor-
ward to incorporate Warburg impedance in an equivalent circuit
model analytically because it is frequency-dependent and therefore
a nonlinear device. The Warburg impedance can also be approxi-
mated with many pairs of parallel RC circuits [26]. Therefore two or
three RC-circuit models have been studied, in which one RC
combination is used to represent electron-transfer kinetics, and
another one or two RC combinations approximate diffusion
contributions. However, our experience is that multiple RC models
do not work sufficiently well for long-term SOP. Moreover, use of
multiple RC combinations compromises the regression stability of
a BSE when compared to a simple R-RC circuit.

We propose in this paper to address diffusion resistance with
a term Rdiffusion that is linearly proportional to the square root of
time and is dependent on the open circuit voltage. That is, in order
to make up for the omission of diffusion from the parameter
identification scheme used to characterize the state of the battery,
we add in the time-dependent diffusion correction Rdiffusion to the
power projection algorithm, thereby approximating the impact of
diffusion. We develop the formula of Rdiffusion based on its practi-
cality in terms of improving the SOP. Because Rdiffusion is absent in
parameter regression of the circuit model, the utility and simplicity
of the R-RC regression is kept intact. Last, we show that hundreds of
randomized power tests demonstrate the enhancement of the SOP
prediction employing Rdiffusion.

The following sections are organized as follows. Section 2
discusses the diffusion issue in the context of the SOP prediction.
Section 3 details the R-RC circuit model incorporating the diffusion
resistance Rdiffusion. The schematic of the model, the regression
scheme, the expression for Rdiffusion, and the analytical equations of
power outputs are provided there. Section 4 describes the
Fig. 1. Equivalent circuit model of the battery system. Rdiffusion is only used in power
calculation but is absent in the circuit regression. Positive current denotes the charge
process. In the absence of Rdiffusion, the schematic reflects the R-RC circuit mentioned in
the text.
experimental setup including essential hardware and software
elements. Section 5 discusses experimental results demonstrating
the SOP improvement with the inclusion of the diffusion resistance
Rdiffusion. Finally, a summary and an overview of open questions are
provided in Section 6.

2. SOP deviation and the diffusion issue

Before we introduce the SOP deviation and its diffusion issue, we
need to briefly discuss how we deduce the SOP and evaluate its
accuracy. In an R-RC circuit model (Fig. 1), the algorithm regresses
recursively the model parameters such as the open circuit voltage
(Voc), thehigh-frequency resistance (R), the charge-transfer resistance
(Rct) and double-layer capacitance (Cd), based on inputs including the
battery current and voltage. The SOP, which is the maximum charge
and discharge power capabilities of a cell, can then be calculated in
real time using the regressed parameters of RC elements and Voc [18].
In order to evaluate the algorithm on the SOP prediction, a battery’s
maximum power capabilities are measured after each driving
process. Such a power test is essentially an analog of a potential-step
excitation, in which the maximum discharge power is measured by
setting the battery voltage to its lowermost limit and recording the
discharge current against time. The maximum charge power is
similarly measured by setting the battery voltage to the uppermost
limit and recording the charge currents against time. More informa-
tion about the power tests is provided in Section 4.

Fig. 2 highlights the SOP deviation by comparing the calculated
powers with the measured values acquired in a typical power test,
Fig. 2. Measured power and predicted powers of a Li-ion cell verse time. The predicted
powers were calculated based on the R-RC circuit model [24]. (a) Corresponds to
a discharge power test and (b) to a charge power test.
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with Fig. 2(a) for the discharge power test and 2(b) for the charge
power test. The predicted values are close to themeasured values at
short times but deviate from the measured values for longer times.
It may be explained that in the beginning, the power is mainly
determined by electron-transfer kinetics; therefore the faradaic
impedance can be approximated with a linear charge-transfer
resistance [25]. In the longer term, the battery current is likely
influenced by diffusion resistance. Fig. 2 also demonstrates that the
SOP deviation is more severe for discharge than charge, indicating
the diffusion effect may be more dominant in discharge cases,
which is consistent with the experiment results published in the
Ref. [24].

Diffusion resistance is revealed more clearly in Fig. 3, which is
based on several SOP measurements at different values of Voc. We
choose It1/2 for the ordinate of the figure because the diffusion-
limited current may be approximated by the Cottrell equation
[25] and therefore the diffusion region would be manifest as
a plateau in the figure. As it is shown in Fig. 3(a), the discharge
currents appear to transition from kinetic control initially to
diffusion control (plateaus) in the longer term. We can also deduce
from the figure that as the Voc increases, diffusion control takes
Fig. 3. The plots of It1/2 vs. t. I is the measured current. Each curve results from a power
test with the battery is set at its corresponding Voc. (a) Corresponds to the discharge
cases and (b) to the charge cases.
place earlier. Fig. 3(b), which corresponds to the charge power tests,
shows no obvious plateaus during the 10-s period, verifying that
the diffusion effect is smaller during charge, and therefore the R-RC
circuit model can predict charge power with small error without
addressing diffusion for the conditions investigated [24].

Electrochemical impedance spectroscopy (EIS) analysis was also
conducted on the cell as shown in Fig. 4. The battery impedance
Z(u) ¼ Z0(u)�iZ00(u) was measured from 0.01 Hz to 10 Hz. The
measurements were performed at four different values of Voc. Two
different regimes are depicted in Fig. 3: the semicircles capture
ohmic and interfacial kinetics losses at higher frequencies, and
diffusion (e.g., Warburg) impedance is seen at lower frequencies.
We can roughly estimate that for frequencies lower than 3 Hz, the
diffusion starts to impact the kinetic behavior. We may therefore
expect that in the time-domain, for power predictions of durations
longer than a third of a second, diffusion resistance will play an
important role. It should be noted that EIS is normally conducted
with small-signal (current or voltage) perturbations and therefore
the cell is around equilibrium during the experiment, whichmay be
somewhat different from the maximum power test experiment,
wherein the cell is driven far away from equilibrium.
3. Theory of the R-RC circuit model including diffusion
resistance

Fig. 1 illustrates the one RC circuit model, based on which the
regression algorithm (BSE) and the power equations are derived. As
we mentioned in the first section, the diffusion resistance Rdiffusion
is only used in the power calculation, but not in the parameter
regression. The governing equation for the regression is derived as
following with the application of Kirchhoff’s circuit laws

V ¼ ðRþ RctÞ I þ RRctCd
dI
dt

� RctCd
dV
dt

þ Voc (1)

In Eq. (1), V and I are measured inputs (their time derivatives
being derived directly from measurements) and R, Rct, Cd, and Voc
are model parameters needed to be regressed at each time step.
Therefore, the formalism corresponds to a parameter identification
Fig. 4. Impedance spectra of a Li-ion cell measured at four different open circuit
potential Voc. Z0 and Z00 are the real and imaginary impedance response of the battery.
The frequencies were swept from 0.01 Hz to 60 Hz with 10 logarithmically interval.
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problem [27]. The parameters are regressed by applying the
measured values of the current I and voltage V of the battery in real
time. The derivatives of the current and voltage over time are
approximated with difference equations: dI/dt¼ (I(t)� I(t� Dt))/Dt
and dV/dt ¼ (V(t) � V(t � Dt))/Dt. The weighted-recursive-least-
square (WRLS) method is applied to regress the model parame-
ters [27,28]. The method is briefly described as follows. Consider
a linear dynamic model with input variables {xl(t), l ¼ 1,2,.,L} and
output variable y(t) and assume these variables are sampled at
discrete times {tj, j ¼ 1,2,3,.,N} and further assume that the
sampled values can be related through the linear equation

y
�
tj
� ¼

XL
l¼1

mlxl
�
tj
�

(2)

where {ml, l ¼ 1,2,.,L} are the l parameters to be identified. In the
WRLS method, the parameters are determined by minimizing the
sum of the weighted square of the error terms

ε ¼
XL
l¼1

εl ¼
XL
l¼1

XN
j¼1

lN�j
l

2
4y�tj��XL

l¼1

mlxl
�
tj
�352

; (3)

where {ll, l ¼ 1,2...L} are the L exponential forgetting factors for
time-weighting data. A larger weight factor ll gives rise to a larger
error term, ε, and thus more influence with regard to evaluating the
parameter ml. The approach we employ allows for multiple
forgetting factors and is described in more detail in Ref. [18]. The
following assignments are made:

yðtÞ ¼ VðtÞ
x1 to x4 ¼ I; ðdI=dtÞ; ðdV=dtÞ; 1
m1 to m4 ¼ Rþ Rct ; RRctCd; RctCd; Voc

(4)

The four ml parameters are updated at each time step, based on
which model parameters (e.g.,R, Rct, Cd, Voc) are being regressed.

The formula for the battery SOP prediction at the real time has
been derived as [18]

P
�
t
�

¼ IVLimit ¼ VLimit
VLimit�Voc

RþRct

þVLimit

�
VLimit�V þ IR

R
�VLimit�Voc

RþRct

�
exp

�
�RþRct
RRctCd

t
�
;

where I and V are the measured current and voltage at the start of
the constant -voltage event. The maximum discharge power
capability is calculated with VLimit set to the mimimum battery
voltage; and the maximum charge power capability is calculated
with VLimit set to the maximum battery voltage.

In order to take into account of the diffusion effect which is not
included in the above equation, we add on the charge-transfer
resistance Rct with a diffusion resistance, as shown in Fig. 1. We
define the diffusion resistance as

Rdiffusion ¼ A

ffiffiffi
t
s

r
(5)

with

s ¼
���eB � eVoc

��� (6)

s is used in the equation of Rdiffusion to approximate the time upon
which the battery power evolves from control by interfacial resis-
tance to control by diffusion [25]. As illustrated in Fig. 3, this
transition time is a function of Voc. In the above two equations, A
and B are two empirical parameters. A can be used to adjust the
importance of diffusion resistance relative to interfacial and ohmic
resistance. B is used to adjust the dependence of s on Voc. Moreover,
in order to accommodate the possibility of different electrode
kinetics processes for charge and discharge [29,30], we use two sets
of A and B values, Ac and Bc or Ad and Bd, (subscript c for charge and
d for discharge) for charge and discharge respectively. For example,
we may choose a larger A for Rdiffusion in the discharge power
calculation, since diffusion is more prominent in discharge power
tests than in charge power tests. We will discuss how to determine
A and B values in Section 4.

By incorporating the Rdiffusion, the analytical equations for SOP
predictions are formulated in following equations (Eqs. (7)e(10)).
The charge power capability is obtained when the battery voltage is
fixed to its maximum value:

Pcharge

�
t
�
¼ IchargeVmax¼Vmax

Vmax�Voc

RþRct�c

þVmax

�
Vmax�VþIR

R
�Vmax�Voc

RþRct�c

�
exp

�
�RþRct�c
RRct�cCd

t
�

(7)

where

Rct c ¼ Rct þ Rdiffusion c ¼ Rct þ Ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t��eBc � eVoc

��
s

(8)

The discharge power capability is obtained when the battery
voltage is fixed to its minimum value:

Pdischarge

�
t
�
¼IdischargeVmin¼Vmin

Vmin�Voc

RþRct�d

þVmin

�
Vmin�VþIR

R
�Vmin�Voc

RþRct�d

�
exp

�
�RþRct�d
RRct�dCd

t
�

(9)

where

Rct d ¼ Rct þ Rdiffusion d ¼ Rct þ Ad

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t��eBd � eVoc

��
s

(10)

It should be noted that in order to avoid the possible zero value
in the denominators of both Eqs. (8) and (10), the value of B should
be chosen outside the range of the possible Voc values; Or in the
denominators of above two equations a very small and positive
number can be added outside the absolute value.
4. Experimental setup

In order to evaluate the algorithm in SOP prediction under
simulated driving conditions, the algorithm was implemented and
integrated with a hardware-in-the-loop (HIL) system [31]. The
battery used in the experiments was a single-cell lithium ion
battery (Hitachi Automotive Products, model # A23-06H04-G00)
which has a nominal capacity of 5.6 Ah and a voltage range of
2.9e4.0 V. All tests were conducted at room temperature.

The architecture of the HIL consists of three components: the
electrochemical cell (EC) interface, the vehicle model, and the HIL
controller. The communications between these three modules are
realized with TCP/IP protocols. The EC interface acts as an envi-
ronmental interface to the electrochemical cell under test, and its
main facilities include a single-channel tester (BT2000, Arbin
Instruments) that can provide up to 5 kW at potentials between
0.6 and 5 V � 1 mV and current ranges up to 1 kA � 10 mA. The
vehicle model is the Hybrid Powertrain Simulation Program



Fig. 5. Four different driving profiles that were randomly selected for the cycling
process of a Li-ion battery cell. The driving profiles were acquired from testing vehicles
driven at four different places and the power data have been scaled down to the cell
level. Only 600 s of profiles were drawn here for demonstration.
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(HPSP) provided by GM. HPSP provides electric-power require-
ments based on specific driving profiles. The HIL controller serves
as the command center in safeguarding the process. For example,
in a cycling process, as a power request is received from HPSP, the
HIL controller analyzes the request and, if valid, sends the request
to the EC interface, receives the I-V-T response from the interface,
iterates through the algorithm with the I-V-T data, and provides
feedback to the HPSP for its preparation of its next power request.
Concurrently, the HIL controller must continuously monitor the
system to ensure operation within specified limits so as to avoid
cell abuse. The algorithm is written in Cþþ and is embedded
within the controller. Execution of the algorithm for regressing the
model parameters in real-time requires initializing values for
certain parameters and setting their allowed bounds. This is
necessary since in a real vehicle environment, noise (e.g., due to
electro-magnetic interference) may lead the regression to spurious
predictions. The initial values, allowable boundaries, and forget-
ting factor l of each parameter used in the experiments are
tabulated in Table 1. As shown in the table, the upper and lower
boundaries for the parameter values are set to be ten times larger
or smaller than their initial values. In the present work, all ll were
set to l ¼ 0.999 for simplicity. The initial value of the parameter
Voc was set to be the measured voltage at the start of the regres-
sion. Based on initial values, boundary conditions, forgetting
factors of the parameters and the updated variables I, V of the
battery, the algorithm regresses the model parameters recursively.
The procedures for power tests presented in this paper are
summarized as follows:

� An initial SOC value was randomly selected ranging from 30 to
75%. (The corresponding open circuit potential Voc was
obtained via a look-up table containing Voc and associated SOC
values [24].) The battery was charged or discharged with
a current rate of C/6 until reaching the selected value of Voc,
where it was allowed to rest for 60 min.

� The cycling profile was randomly selected from anyone of the
four driving profiles as shown in Fig. 5. The cycling process
lasted at least 10 min, during which the battery voltage and
current were sampled every 100 ms.

� The cycling process was stopped at a randomly selected time,
and a choice of test (either max charge power test, or max
discharge power test) was randomly made. The charge or
discharge power tests were performed by commanding on the
battery the maximum voltage of 4.0 V or minimum voltage of
2.9 V, and tracing the current response as a function of time.
The measured charge or discharge power capability as the
function of time was determined by multiplying the current
trace by the maximum or minimum voltage, respectively.
Table 1
Initial (seed) values and bounds for the parameters used for the regression of the
simplified version of the DD algorithm. The forgetting factor for each parameter was
set to 0.999 in this work.

Quantity, units Initial value Boundary values
[min, max]

R, mohm 4 [0.4, 40]
Rct, mohm 2.5 [0.25, 25]
Cd, F 4000 [400, 40,000]
Voc, V Measured voltage-value

at t ¼ 0
[2.7, 4.1]

w (weighting factor) 0.995
Ahnominal, Ahour 5.6
Vmin(Power), V 2.9
Vmax(Power), V 4.0
5. Experimental results and discussion

Fig. 6 highlights a typical parameter-regression result from the
simplified algorithm during the cell cycling process. As shown in
the figure, the high-frequency resistance R remains almost the
same throughout the driving process, consistent with a constant
number of charge carriers in the electrolyte phases, and little
change in the solid phase electronic resistance in the lithium ion
battery. All parameters were regressed within their preset
boundary values, indicative of algorithm stability.

The empirical values of A and B to be used in the Rdiffusion
calculation were acquired by fitting the measured discharge and
charge powers vs. time curves with the Eqs. (7) and (9) respectively.
Since inside Eqs. (7) or (9), all the parameter values are known
from the real-time regression except Rdiffusion, we are able to
isolate optimal values for A and B in this manner. The
LevenbergeMarquardt method was applied for this nonlinear fit
[32]. Fig. 7(a) and (b) demonstrate the curve-fitting results on the
measured discharge and charge powers respectively. For compar-
ison, the calculated powers without considering Rdiffusion (i.e.,
Rdiffusion ¼ 0 in Eqs. (7) and (9)) are also plotted. The optimized A
and B values for representing charge power projections were near
0.0002 Ohm and 3.8 V, respectively. For the discharge power
projections, the corresponding values were 0.002 Ohm and 4.0 V,
respectively. The optimized A for the discharge power test is ten
times larger than the A for the charge-power test, consistent with
the earlier observation that the diffusion effect is more prominent
in discharge power case than in the charge-power case.



Fig. 6. The regressed parameters R, Rct, Cd, Voc as the function of time during the
cycling process with driving profile of I-t and V-t plotted at the top of the figure.

Fig. 7. The comparison between the measured power as the function of time and the
predicted power projections in the maximum discharge power test event (Fig.(a)) and
in the maximum charge power test event (Fig. (b)), respectively. In these two figures,
the predicted powers without Rdiffusion are calculated with Rdiffusion ¼ 0 in Eqs. (7)e(9).
The predicted powers with Rdiffusion are acquired by curve-fitting the measured powers
with Eqs. (7)e(9).
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A significant concern for this technique is stability of the A and B
values relative to different circumstances (e.g., different drive
events). We performed dozens of random power tests (random
initial SOCs, testing durations, and test schedules) and the opti-
mized values of A and B were acquired as shown in Fig. 8. In
discharge cases, the best values of A have a mean of 0.002 with
w30% standard deviation, and B a mean of 4.0 withw5% deviation;
in charge cases, the best values of A have a mean of 0.0002 with
w10% deviation, and B a mean of 3.9 with w10% deviation. We
conclude from the plots that the values A and B were quite stable
around the above mentioned optimized values. However, the
optimized values of A and B may change due to aging of a battery;
the above procedures identify A and B values that can be used to
update A and B adaptively.

Finally we conducted more than three hundred random power
tests during a three-month period with the fixed A and B values in
the algorithm, and summarized results in Fig. 9. All of the testswere
performed with the battery at the room temperature. Each data
point in the figure corresponds to a random test, and negative
(positive) powers refer to the discharge (charge) power tests. We
compare the measured powers with the predicted powers at three
given times; i.e., at 0 s (instantaneous power projection), 2 s (short-
term), and 10 s (long-term). Fig. 9(a) and (b) provide the compar-
ison between experiment and the SOP algorithm without Rdiffusion.
The instantaneous SOP prediction for both charge and discharge
power tests is always accurate, indicating the consistency in
regressing the high frequency resistance R. The charge-power
projections are quite accurate for the SOP at short times but are
slightly larger than the measured values at long times. The
discharge-power projections are larger than those measured at
both short and the long times. The deviations tend to grow as the
power magnitude increases. The deviation can reach 20% and 50%
for short and long times, respectively. Fig. 9(c) and (d) provide the
comparison between experiment and the SOP algorithm with Rdif-
fusion. The SOP prediction for the discharge cases improves signifi-
cantly, with the deviation within 2%; and modest improvement is
seen for the charge cases, with the deviation within 10%.

6. Summary and open questions

We have demonstrated a simple and practical technique to
improve the SOP prediction significantly without compromising
the simple and stable regression behavior of conventional algo-
rithms. Specifically, we have proposed and implemented a tech-
nique to incorporate diffusion resistance in formulating the power
prediction equation. The techniquemay be useful in supplementing
other RC circuits used for BSEs for the purposes of power
prediction.

Several open questions remain. First, we have not addressed the
influence of temperature. If the empirical parameters used in
calculating the diffusion resistance Rdiffusion are sensitive to
temperature, thenwemay need to build a look-up table in order for



Fig. 8. The best A and B values resulted from the curve-fits of power data measured from dozens of random power tests. For discharge Az0:002 and Bz4:0. For charge, Az0:0002
and Bz3:8. These values marked as dash lines in respective cases.
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the algorithm to select the best parameter values for different
temperatures. Second, the derivation of the power equation is
based on the assumption that Rdiffusion is a conventional resistance
that can be simply added to that of the charge-transfer resistance to
modify the power projection equation. While this approach has
been shown to work well in this study, the generality of the
approach can be questioned. A more rigorous formulation can be
Fig. 9. Summary of random tests for the 0, 2, and 10 s SOP tests. Each point corresponds to o
reflect measurements. Figures (a) and (b) are plotted based on the power calculation witho
derived, but that is beyond the scope of this work. Third, diffusion is
not considered in the R-RC regression. It may be that other
batteries, particularly those for pure electric vehicle applications
that have thicker electrodes and larger particles, will encounter
greater diffusion resistance. In that case, we may need to include in
the regression a nonlinear circuit element that mimics diffusion
processes.
ne test. The SOP power projections correspond to the ordinate, and the abscissa values
ut Rdiffusion, and (c) and (d) are based on the calculation with Rdiffusion.
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